skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manga, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When and why earthquakes trigger volcano and geyser eruptions remains unclear. In September 2022, Steamboat Geyser in Yellowstone, USA erupted 8.25 hours after a local M3.9 earthquake—an improbable coincidence based on the geyser’s eruption intervals. We leverage monitoring data from the surrounding geyser basin to determine if the earthquake triggered this eruption. We calculate a peak ground velocity of 1.2 cm s−1, which is the largest ground motion in the area since Steamboat reactivated in March 2018 and exceeds a threshold associated with past earthquake-triggered geyser eruptions in Yellowstone. Despite no changes in other surface hydrothermal activity, we found abrupt, short-lived shifts in ambient seismic noise amplitude and relative seismic velocity in narrow frequency bands related to the subsurface hydrothermal system. Our analysis indicates that Steamboat’s eruption was likely earthquake-triggered. The hours-long delay suggests that dynamic strains from seismic waves altered subsurface permeability and flow which enabled eruption. 
    more » « less
  2. Abstract Magma ascent and eruption are driven by a set of internally and externally generated stresses that act upon the magma. We present microstructural maps around melt inclusions in quartz crystals from six large rhyolitic eruptions using synchrotron Laue X-ray microdiffraction to quantify elastic residual strain and stress. We measure plastic strain using average diffraction peak width and lattice misorientation, highlighting dislocations and subgrain boundaries. Quartz crystals across studied magma systems preserve similar and relatively small magnitudes of elastic residual stress (mean 53–135 MPa, median 46–116 MPa) in comparison to the strength of quartz (~ 10 GPa). However, the distribution of strain in the lattice around inclusions varies between samples. We hypothesize that dislocation and twin systems may be established during compaction of crystal-rich magma, which affects the magnitude and distribution of preserved elastic strains. Given the lack of stress-free haloes around faceted inclusions, we conclude that most residual strain and stress was imparted after inclusion faceting. Fragmentation may be one of the final strain events that superimposes stresses of ~ 100 MPa across all studied crystals. Overall, volcanic quartz crystals preserve complex, overprinted deformation textures indicating that quartz crystals have prolonged deformation histories throughout storage, fragmentation, and eruption. 
    more » « less
  3. Abstract On 15 January 2022, Hunga volcano erupted, creating an extensive and high-reaching umbrella cloud over the open ocean, hindering traditional isopach mapping and fallout volume estimation. In MODIS satellite imagery, ocean surface water was discolored around Hunga following the eruption, which we attribute to ash fallout from the umbrella cloud. By relating intensity of ocean discoloration to fall deposit thicknesses in the Kingdom of Tonga, we develop a methodology for estimating airfall volume over the open ocean. Ash thickness measurements from 41 locations are used to fit a linear relationship between ash thickness and ocean reflectance. This produces a minimum airfall volume estimate of$${1.8}_{-0.4}^{+0.3}$$ 1.8 - 0.4 + 0.3 km3. The whole eruption produced > 6.3 km3of uncompacted pyroclastic material on the seafloor and a caldera volume change of 6 km3DRE. Our fall estimates are consistent with the interpretation that most of the seafloor deposits were emplaced by gravity currents rather than fall deposits. Our proposed method does not account for the largest grain sizes, so is thus a minimum estimate. However, this new ocean-discoloration method provides an airfall volume estimate consistent with other independent measures of the plume and is thus effective for rapidly estimating fallout volumes in future volcanic eruptions over oceans. 
    more » « less
  4. Abstract Hydration fronts penetrate 50–135 μm into glassy rhyolite embayments hosted in quartz crystals from the Mesa Falls Tuff in the Yellowstone Plateau volcanic field. The hydration fronts occur as steep enrichments that reach 2.4 ± 0.6 wt% H2O at the embayment opening, representing much higher values than interior concentrations of 0.9 ± 0.2 wt% H2O. Molecular water accounts for most of the water enrichment. Water speciation indicates the hydration fronts comprise absorbed meteoric water that modified the original magmatic composition of the rhyolitic glass. We used finite difference diffusion models to demonstrate that glass rehydration was likely produced over a few decades as the ignimbrite cooled. Such temperatures and time scales are consistent with rare firsthand observations of decadal hydrothermal systems associated with cooling ignimbrites at Mount Pinatubo (Philippines) and the Valley of Ten Thousand Smokes (Alaska). 
    more » « less
  5. Large gas bubbles can reach the surface of pools of mud and lava where they burst, often through the formation and expansion of circular holes. Bursting bubbles release volatiles and generate spatter, and hence play a key role in volcanic degassing and volcanic edifice construction. Here, we study the ascent and rupture of bubbles using a combination of field observations at Pâclele Mici (Romania), laboratory experiments with mud from the Imperial Valley (California, USA), numerical simulations and theoretical models. Numerical simulations predict that bubbles ascend through the mud as elliptical caps that develop a dimple at the apex as they impinge on the free surface. We documented the rupture of bubbles in nature and under laboratory conditions using high-speed video. The bursting of mud bubbles starts with the nucleation of multiple holes, which form at a near-constant rate and in quick succession. The quasi-circular holes rapidly grow and coalesce, and the sheet evolves towards a filamentous structure that finally falls back into the mud pool, sometimes breaking up into droplets. The rate of expansion of holes in the sheet can be explained by a generalization of the Taylor–Culick theory, which is shown to hold independent of the fluid rheology. 
    more » « less
  6. Abstract The rheology of highly crystalline magma regulates its mobility, which may, in turn, determine the occurrence and styles of volcanic eruptions. We measured the rheology of high‐temperature magma with a basaltic‐andesite composition to document the properties that govern the transition from solid‐like to liquid‐like behavior. The measured elasticity in the solid‐like regime is three orders of magnitude lower than the shear modulus for a viscous silicate melt at high frequency. A considerable reduction of shear modulus is observed by increasing strain amplitude, indicating that the crystals unjam and the magma undergoes liquefaction. Crystal‐rich magma behaves as a dense suspension in which rheology changes rapidly with increasing strain and strain rate. Such characteristics enable the rapid mobilization of magma to trigger eruptions. 
    more » « less
  7. Explosive volcanic eruptions generate electrical discharges, a phenomenon termed volcanic lightning (VL). VL is increasingly well-investigated and monitored for modern eruptions, however volcanism has been active since Earth’s origin. Thus, investigating VL under different atmospheric conditions is relevant for studies of early atmospheric chemistry and potential prebiotic reactions. We developed an experimental setup to investigate VL in varying atmospheres. We present the first experiments of laboratory discharges in particle-laden jets in varying atmospheric conditions. The new experimental setup is a mobile fragmentation bomb erupting into a gas-tight particle collector tank. This setup enables the testing of different atmospheric conditions, changes in the carrier gas of the jet, changes in the pressure within the tank, monitoring of the jet behaviour, and sampling of the atmosphere together with the decompressed solid materials. We find that the number and magnitude of near-vent electrical discharge events are similar in CO2-CO and air atmospheres. 
    more » « less
  8. Bubble and crystal textures evolve during magma ascent, altering properties that control ascent such as permeability and viscosity. Eruption style results from feedbacks between ascent, bubble nucleation and growth, microlite crystallization, and gas loss, all processes recorded in pyroclasts. We show that pyroclasts of the mafic Curacautín ignimbrite of Llaima volcano, Chile, record a history of repeated autobrecciation, fusing, and crystallization. We identified pyroclasts with domains of heterogeneous vesicle textures in sharp contact with one another that are overprinted by extensive microlite crystallization. Broken crystals with long axes (l) >10 μm record fragmentation events during the eruption. A second population of unbroken microlites with l ≤10 μm overprint sutures between fused domains, suggesting the highly crystalline groundmass formed at shallow depths after autobrecciation and fusing. Nearly all pyroclasts contain plutonic and ancestral Llaima lithics as inclusions, implying that fusing occurs from a few kilometers depth to as shallow as the surface. We propose that Curacautín ignimbrite magma autobrecciated during ascent and proto-pyroclasts remained melt rich enough to fuse together. Lithics from the conduit margins were entrained into the proto-pyroclasts before fusing. Autobrecciation broke existing phenocrysts and microlites; rapid post-fusing crystallization then generated the highly crystalline groundmass. This proposed conduit process has implications for interpreting the products of mafic explosive eruptions. 
    more » « less